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with I. H. Edelfelt
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SUMMARY

Calculations for the radiation of spinning acoustic modes,
with or without a centerbody, and with or without flow tempera-
ture and velocity discontinuity, are presented. Solutions to
the appropriate convected wave equations devised around Fourier
transforms and Wiener-Hopf technique are presented. The decom-
position of the asymmetric kernel, resulting from a flow and
temperature mismatch, is carried out in part exactly and
partially using the so-called Carrier-Koiter approximation
procedure. The resulting solutions offer a good approximation
to the radiation of both symmetric and asymmetric modes through
a flow discontinuity represented as a plug flow jet issuing
from a cylindrical duct. Besides the Koiter approximation,
the major limitation on the calculation program is the diffi-
culty of calculating the high order Bessel functions with
sufficient accuracy.

Sample calculations for symmetric modes are presented
offering comparisons between the current calculations and in
particular available experimental data such as that of Plumblee
et al [6] and Mechel et al [7]. So long as one restricts
attention to the amplitude functions, such as the radiation
pattern or the absolute value of the conversion (reflection)
coefficients, there is generally a qualitative agreement, even
here there are certain peculiar features of the predictions
which do not appear to be reproduced experimentally for reasons
discussed. The agreement between the calculated and measured
phase values in the presence of flow appear to be rather poor.

In the case of the asymmetric modes, limited comparisons
between calculated and measured radiation patterns appear to
be reasonable, thus in general reinforcing the conclusion
regarding ability to predict amplitude functions. However
none of the data available go to significantly high enough Mach
number. For this one must rely purely on calculations.

The calculations suggest that the influence of the Mach
number discontinuity is to offer a conflict between the effects
of convection and refraction. The former becoming increasingly
more significant at high subsonic Mach numbers by the presence
of a strong lobe in the shadow zone. Effects of flight condi-
tions are to weaken such conflicts so that in the 1limit of
uniform Mach number, one recovers Carrier's well-known solution.

The effect of a temperature mismatch is rather more
dramatic, resulting in a sharp beaming of sound off to the
side. This is consistent with the kinematic picture of a
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INTRODUCTION

In their now classic paper, Tyler and Sofrin [1] demon-
strated that turbomachinery noise propagates as spinning
acoustic modes and is eventually radiated to the far field.
While the qualitative features of the physical process were
brought out, their use of a radiation field uncoupled from the
process within the duct and no flow left a number of unanswered
questions. There appeared to be a need for the solution of the
complete radiation problem coupling the field within the duct
to the far field in the manner of the Levine and Schwinger [2]
paper and its extension to a duct immersed in a uniform flow
by Carrier [3]. From the point of view of turbomachinery
application, the need was to be able to handle high lobe num-
ber spinning (asymmetric) duct wave guide modes and the flow
discontinuity present as for example in the exhaust mode. The
first poses computational difficulties since it requires an
ability to handle high order Bessel functions accurately.
Lansing et al. [4] have developed a theory for the asymmetric
modes in extension of the Carrier paper [3]. However the use
of an isothermal, uniformly flowing medium excludes such fea-
tures as refraction and an enhanced mismatch between the duct
and the surrounding. The refractive influence of the flow
mismatch was demonstrated by Mani [5], who employed a form of
the Carrier-Koiter approximation scheme. Unfortunately these
calculations are restricted to flat ducts.

While the theory has been slow in evolving, the experi-
mental measurements of relevant model problems have not been
easy to come by. Since the problem of primary interest must
include a flowing medium, the measurements have been limited
by the inadequacy of acoustic instrumentation in turbulent
flow. Then there is the problem of generating suitably well
defined acoustic modes, especially the asymmetric spinning
modes of interest. Perhaps the most comprehensive attempt
along these lines is that of Plumblee et al. [6], who have
developed an annular flow duct apparatus capable of handling
flow velocities up to 200 ft/sec. together with the acoustic
instrumentation necessary to map the acoustic fields both
within the duct and in the radiation field. Plumblee et al's.
[6] attempt at measuring spinning mode radiation impedances
are unique. One of the very few other measurements available
are those of Mechel et al. [7], who measured the plane mode
reflection coefficients both with and without flow. When it
comes to more realistic measurements, as from fans, the only
available data are for the radiation field. Even these in
general do not offer a good basis for discerning the influence
of specific modes and moreover the picture is clouded over by
the incoherent scattering of the noise by flow turbulence and
velocity gradients. The problem is clearly more severe in
the exhaust mode than the inlet mode. Crigler and Copeland
[8] have made some rather detailed measurements of a fan
radiation field which appears to be strongly dominated by a
rotor-IGV interaction of a definitive modal character.




In this report we shall attempt a solution to the problem
of radiation of spinning duct acoustic modes of high lobe order
and include in our consideration a flow mismatch both in the
sense of a jet exhaust flow and a temperature mismatch between
the jet fluid and the surrounding. The problem in a sense re-
presents the fan exhaust or turbine exhaust problem. However
we shall model this using a cylinder of zero wall thickness
from which issues a plug flow jet through which upstream sound
refracts and radiates to the far field. We shall also approxi-
mate the influence of a centerbody by allowing the inner
boundary to be a doubly infinite '"rod". The solution will be
devised around the appropriate convected wave equation using
the particle displacement matching boundary condition and the
Wiener-Hopf technique. In the process of the solution, we
shall resort to the Carrier-Koiter approximation scheme to
render the problem of decomposing the Wiener-Hopf kernel
tractable. The validity of the scheme has been extensively
discussed and illustrated by both Koiter [9] and Carrier [10].
One notes also the successful use of the same by Mani [5] in
the flat duct problem.

We shall attempt an evaluation of our calculation routine
by comparing sample predictions with the earlier discussed and
other experimental results. We expect at the outset reasonable
correlation for the radiation patterns but not for the reflection
coefficients, or more precisely the phase of the reflection
coefficient due to difficulties resulting from experimental
conditions and more importantly the presence of turbulent flow.

Finally, we shall also offer some interesting results
related to temperature mismatch.

NOMENCLATURE

a radius of duct, used to nondimensionalize all
the length parameters

c speed of sound

Hél)(Z) Hankel Function of the first kind

Im(Z) modified Bessel Function of the first kind
J V-1

Jm(Z) Bessel Function of first kind order m

k reduced frequency, wa/c

Km(Z) modified Bessel Function of the second kind
M Mach number

P pressure

Ym(Z) Bessel Function of the second kind




o Fourier transform variable

g hub to tip ratio of the centerbody

p density

w circular frequency

¢ velocity potential

Mns sth zero of the appropriate Bessel function or cross

product order m

n particle displacement

II. THEORY FOR THE RADIATION OF SPINNING DUCT WAVE GUIDE MODES

ITI.1 The Exhaust Mode - Formulation

Consider now the problem of a monochromatic spinning
acoustic mode lobe number 'm' in semi-infinite duct of radius
'a = 1.' The duct wall is assumed to be of a negligible thick-
ness and is located at r = 1., x < 0 as in Figure 1, where
(r, 6, x) represent a cylindrical coordinate frame. The ana-
lysis will be restricted to small disturbances in perfect,
inviscid, nonheat conducting media. 1In the formal analysis,
however, an allowance will be made for a mismatch between the
flow within the duct and the surrounding medium. The region
formed by the duct and its phantom extension will be designated
as region 'I' or 'l' in the subscripts. The surrounding region
is then II or 2 in the subscripts. In what follows the fre-
quency of the incident signal, propagating in the duct toward
the open end, will be prescribed to be 'w' and the time de-
pendence of the form exp(-jwt), j = /-1, will be assumed.

Then the disturbance velocity potential amplitude ¢ is governed
by the convected form of the Helmholtz equation

V24 + (k + M 22 6 = 0 (1)

where it is understood that M = M{ in region I and M = Mg in

region II and that k = ky = wa/cy; and k = k = wa/c, respectively.
The latter makes an allowance for dlfferences in te%peratures

(or gases) between regions I and II. The solution to the above

problem is to be carried out subject to the boundary conditions:

a) Along the walls of the duct the transverse acoustic
particle velocity be zero, i.e.

2 _

NT r =1 and x < O

b) The acoustic pressure be continuous on the extension
of the duct into x > 0,
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c) In addition to the above, noting the definition

Dn _ 3¢
Dt or °’

it is required that the radial acoustic particle
displacements in the two regions be matched along
the streamlines separating the two regions. This is
the boundary condition proposed by Ribner [12] and
Miles [13]. There are some interesting questions
related to this boundary condition, but we defer
these to a later section.

Adopt now a representation in terms of the Fourier trans-
forms, so that in the two regions I, II, we write, taking a
circumferential dependence of the form exp(j m 6):

o2}

I (Yl r) .
¢y = f A, (0) ey © 0% do (2)
1 B Yy In(yy)
and
K (v, 1) .
= m''2 -jax
0 J B, (o) Y, Ké(Yz) e do (3)

where o is the Fourier transform parameter I, and K, being
modified Bessel functions of the 1lst and 2nd kind

and vy2 = a? - (k + aM)? (4)

It is easily verified that equations 2 and 4 and 3 and 4
satisfy the wave equation. The '+' signs in (2) and (3)
designate functions regular and free of zeros in the upper
half a plane, to be defined presently. In the procedure we
have adopted, we shall draw heavily on the book by Noble [11].
Hence to simplify repeated references, such as to specific
equations or pages, we shall adopt the notation (N, 1.15) in
reference to equation (1.15) of Noble or page (N-10) as
referring to page 10 of Noble [11].

Now the function y of o clearly has two branch points at
k/(1 - M) and -k/(1 + M), so we introduce branch cuts such
that v - +~ as o + *=, As discussed by Noble, the cuts can
be made in several different ways, however for our subsequent
calculations the cuts which turn out to be convenient are
illustrated in Figure 2, where for the sake of illustration
it is assumed that k has a small, but positive imaginary



component, i.ef
k = kr + i€ , taking o =&+ jn.
The cuts are along the hyperbolas defined by &n = in the

limit € - 0 these reduce to cuts such as 111ustrate5 for
example, by Figure 3. Actually, it turns out that the cuts

for y4 could just as conveniently have been made to extend
horizontally from ki/(1 - My) to += and -kq/(1 + Mp) to -,

but we adopt the above convention for consistency. This allows
us now to define the upper and lower half planes (taking My,

Mg to be positive) as

upper half plane - for Im(a) > the larger of Im(—kz/(l +
Mz)) or Im(—kl/(l + Ml))
and
lower half plane - for Im(a) < the lesser of Im(kz/(l -
M2)) or Im(kl/(l - Ml))
Consequently the path of integration in (1) and (2) is taken
to pass between the branch cuts in the region of commonality
(shaded region in Figure 2).
Clearly the form of solution adopted ensures the satis-

faction of the boundary condition (a). Hence consider an
incident wave of the form

Pine = In(Hpy TIexp(d K x) (5a)
or
. J_(u r)
= —J m' mn
%inc py o (T - M K_7K ) exp(j K = x) (5b)

where Kmn the axial propagation constant is defined as

*Writing a = £ + j n, the branch is defined as
61 + 62

=)

lvle

with the ranges -2m + arc tan A+ < 61 < arc tan A+

arc tan A~ < 62 < arc tan A~ + 27

where
+_ n-¢/(1 - M)
E -k /(@ -1

=
|

- nte/(1+ M)
E+ k. /(1 + M)




vk — (1 - M2 u? - k. M
K - 1 ) 1’"mn 1 1 (6)
mn 1 - Mi

with the branch chosen being Im(Km ) > 0, corresponding to
downstream propagation, u being %he zero of J'(u__) = 0,
satisfying boundary condiffon (a). Then the ralliaf™acoustic
particle displacement is

N = __d 09/3r
w(l - M Kmn/k)

or

umn Jé(umn r) .
ninc = pl wZ(l — Ml Kmn/kl)z exp(J Kmn X) (7)

By its definition the incident wave particle displacement
vanishes as r » 1_ for all x. Again, the acoustic particle
displacements corresponding to (2) and (3) are

. I'(y, 1) .
= J m''1 -jax
"t T J MO mEa o AT ¢ @ (8)
.7 K'(y, T) .
- J m: 2 -Jjox
2 T J Bl @3 a /5K (v, ¢ 4 (9

Substituting into the boundary condition (c¢) and noting that
Nine = 0 for r = 1_, there obtains the relation between A_ and

B,

A, (o) B (a)
(1 + o M1/k1) T (1 + a Mz/kz)

= F_(a) (10)

The left and the right hand sides being regular and zero free
respectively in the upper and lower half planes. Noting the
behavior of the two sides as x » 0, by the standard application
of the Wiener-Hopf argument and the Liouville theorem, each
side is equal to a constant taken to be zero. There obtains
the relation

(1 + a Ml/kl)
(a + g Mz/kz) B+(a)

A () = (11)

The remaining boundary condition, continuity of acoustic
pressure :

noting the definitions




r (1 + « M_/k_)I (yl r) —jox
Py =dep e | A 7 m(Y1) e do  (12)
¢ (1 + a My/k,)K (v, T) _.
Py = J py 0 J B, () - = 3 2~ ¢TI ga (13)
o 2 m Yo
and on r = 1 for x > O, writing
LA CTIND I -jax
m'mn e
pP. = J da (14)
inc 27w J (o + Kmn)
since ©
R T s L
2T j o + Kmn

- 00

then yields the functional equation

Py (1 + a My/k DK (¥5) (1 + o M/k)?* I (vq)

Py Yo m(Yz) T (Ao My/k,) vy ID(vq)
Jo(u )
m' "mn _
x By(a) - 57 pq w(a + K ) G_(a) (15)

where the equality is understood to apply to the region of
commonality (shaded region of Figure 2), and the function

G (a) is regular and free of zeros in the lower half o plane.
Denote by L(a) the grouping in the curly brackets. Then
equation (15) may be rewritten as

J (u_ )

L(a) B,(a) - 5= p? e k5 - 6. (16)

Then if the function L(a) can be decomposed into factors
L (o) and L_(a) regular and free of zeros in the upper and
lower half planes

L(a) = L, (a) L_(a) (17)

The standard application of the Wiener-Hopf arguments and the
Liouville theorem yields

i InMpn )
B,(a) = 3~ py w(a + K JL,(a) L_(-K_) (18)

Except for the decomposition of L(a), this completes the



formal soiution to the probliem posed.

IT1.2 Decomposition of the Wiener-Hopf Kernel

IT.2.a The Carrier-Koiter Approximation

Recall the definition of the kernel function L(a):

o) = Py (1 + a My/k,)K (V) i (1 + o Ml/k1)2 I (vy)
Py Yo K (vg) (1 +a Mz/kz) Yy In(vy)

Formally speaking the required split can be carried as per
theorem c, page (N-15), of Noble, whence

© + js
- 1 An(L(z))
2n(L,(a)) = 5= 3 J 7 - a dz
-0 + jS

with the integration along the lower boundary of the cross-
hatched region in Figure 2

o 4+ jr
and m_(0) = 52t [ AEE) 4
-0 4+ J'r

the integration path being along the upper boundary of the
crosshatched region of Figure 2. However, it does not appear
possible to carry out the integrations explicitly, or reduce
them to simpler integrals as would be the case if L(a) were
purely an even function of a. In view of this, the decom-
position was carried out using the Carrier-Koiter approximation
scheme [9, 10]. The applicability of this approximation to

the acoustic radiation from a flat duct has been previously
demonstrated by Mani [5]. To motivate the approximation,
regroup L(a) as follows.

(1 + a M,/k,)? (vg = Y5)
_ 1’71 2 e
M) = T a ik ¥y TOT, Ky 7 T (19
where
(Y2 - Yl) '
T(a) = 2e Vo In(Yy) Ki(rg) H() (19b)

2
fog (1 +a Mplko)™ My

H(o) = ﬂfﬁf(1_+ o M 77 Y,

Km(Yz) Ié(vl) _
I,(vq) K, (Ys)

1 (19c)
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We will presently need the limit 2im H(a), which is readily
shown to be o >

F2 M2 2 1 - M1
a > © 1 1 2

assumlng the same static pressure within and without the jet,

and where T', and ', are the ratio's of specific
héat% in geggons IT and I respec%lvely. In the case of uniform
flow, My = Moy and p /p1 = 1, the square bracketed quantity in
(19a) is essentially a normalized Wronskian. Consider the
substitute kernel L*(a) defined as

(1 + o M /k )? 0 e(Yl - Yg)

(1 + aMy/ky) vy DGy v, Kn(v,) | 4

L*¥(a) = T*(a) | (20a)

with T*(a) being defined as the quotient approximation

2
o - e i
With %? = 2im [-/7,/v; H(a)] it is clear that L*(a) + L(a)

o > o

in the limit as a - « along the real axis. A more complete
match according to the Carrier-Koiter rules is then obtained
by matching L(a) and L*(a) at o = 0 up to its first moment:

§ = T(O) (21a)
§/2 = T(”%,Zof(o) (21Db)
8/8 = 6/N oo (21c)

The objective now is to carry out the decomposition of L*(a).
To facilitate the subsequent discussion, group L*(o) as

1 f5(0) f,(a)

L*(a) = g T (@) I(a@)

T*(o)

where T*(a) is defined by equation (20b) and the functions f
are defined as

g mrloevy
£.(a) = () e 1 Il(Y)
+
£ ey = -2y T K'(Y,)
2 2 m- 2

f3(a) (1 + « Ml/kl)z/(l + Mz/kz)
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In terms of this simplified notation, the integral decomposition
of L*(a) is readily carried out. For an example, Li(a) is
simply expressed as
js
n[1/8 T*(z)]
z - a

1
21 J

gn(L*(a)] = dz

+ 4+

js

IS anif (o)

+
+ o+

- a9
—00 js
1 9% emir, (o)1
+ J —4
-0 4+ js
=+ 38 gn £.(2)
- J — 4z
r - o
—00 4 jS
B TYE N eIy
- J _—— dg;
T - o
-0 + jS

One can similarly write down the factor L*(a). Each integral
will now be treated separately in the following subsections.

ITI.2.b Decomposition of T*(a) and f3(a)

The decomposition of the quadratic quotient T*(a) is
trivial, the roots of the quadratic terms being

=_ Y, A —770
u.l, 2 = - § - '71/4 - (S/B (223)
1
Ry 4= -3t /T[4 -6/ (22b)

Quotient groupings such as for example
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a - R a - R

VSB/)\Q—_——Ri or V(SB/)\a__—R—i‘ etc.

being assigned to the appropriate half planes by testing the
location of the roots Ri'

The decomposition of the remainder kernel can be carried
out exactly. Since the factor (1 + a Mj/kq1)?/(1 + a My/ky)
or fg(a) is clearly a plus function, hence write

+
fs(a) fs(a)

fg(a) 1.

II1.2.¢c Integral Decomposition of fz(a)

The grouping fo(a) was motivated by the suggestion made
by Noble (page N-130). It should be noticed that fo(a) is in
fact a function exclusively of Yo, hence we may write

m+ 1 vy
_ _ Y2 2

The function f(y,) is free of zeros in the entire complex o
plane. Integral decomposition of this function can be further
simplified by making the following transformations in the a
plane

ko My

G = a(l - M2 o "2 2
2 (1 - w3t

02
(24)

A 3

in terms of the &02 plane, f(yo) is an even function of Gaa.
This at once allows us to simp%ify the integrations involved

by using the procedure 'c' of Noble, page (N-19). Hence deform
the contour of integration in the &02 plane as per Figure 3,
then

+g(&02)
£y = 1, = {f(yz)}% e 2 (25)
£5 =t = {zypit e 2 (26)
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b P, -

We omit her ils of the a

et etai igebra involved in deducing
an expression for g(&) with simply a reference to Noble [11]
(pages N-19 and N-20). Then for [£]| < kg, it is easily verified
that
I22
g(e) = 28 p I Q(wu du
Ty ((kh - E%) - utiKE - u?
k
_ 285 Jz u? du
m {(EZ _ EZ) — uZ}/kZ _ u2
0 2 2
age ( kS + 37
T I vorer W
0
. /&2 + y?
_2j¢& 2 dy
m yr + &7
0
- fg% a(/kZ - £7) + fg% g - e (27)
, — ) ! _ T
with Q(x) = arc tan(Ym(x)/Jm(x)) 5 (28)

'P' preceeding the integrals denoting that they are to be taken
in the sense of principal value. The integrations can be con-

siderably simplified and carried out explicitly for k, suf-
ficiently greater than the first zero Um1 of J&(x) = 8, by

using the asymptotic expansions of Q(x) given by Abramovitz and
Stegun [14], thus

4m? + 3 . 16m"* + 184m? - 63 +

2x) = x - (5 * %) M 384%7

Usefulness of the above expansions is well illustrated by the
sample comparisons for m = O and m = 10 in Figures 4 and 5.
It appears to suffice that ko be more than roughly halfway
between ypq and ypo. Hence obtain for 0 < £ < kg and ko suf-
ficiently > upi, using only the first 3 terms of the above
expansion

g(£) = =2

T k

siné Q(k, sing) - /1 - £2/k2 a(/k2 - £%)
d

(sin?6 + 52/§§ - 1)

0

(aaf
O——|3

)
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. 2 4m2 + 3 0 -1 E
+ - 2 ——*°> _ [=- - cOos —-
g J - 7 Ez [2 c pound (29)

Provided k, is sufficiently larger than upj, one may readily
deduce other similar formulae. We shall present here only two
additional formulae of interest in deducing the conversion
coefficients in mismatched flow, thus first for £ > kz > Mg -
we have

g(g) = -

R w2 2

2 Q(x)x - ki + &

2 J 2 2 dx + ¢
o {(x

gn (= + JEZ/RZ - 1)] (30)

2 % 2
2 k2
and for £2~= k2 > ué, 1
k2 ,
_ 2§ Q(x)x - x
g(g) = = J — dx
T {(k2 - £2) - x2}/k2 - x2
0 2 2
2+
+ 5l (G4 pm o+ 22413, (31)
2 4 TT 2
8 k2

IT1.2.d Product Decomposition of fl(a)

Consider next the factor fq(a)
_‘Yl
e I (vy)

(32)
(yy/2)™ = 1

fi(a) =

~Y

The factor e 1 can in fact be extracted and treated separately.

Using the branch cuts illustrated schematically in Figures 2,
the decomposition of e Y1l can be carried out in a manner par-
allel to the procedure used for fo(a). Since the results are
identical, for the sake of brevity, we quote instead results
adopted from Noble (N-1.35) making the transformation

ko My

2 3
= a(l - MHE - ————
(1 - M2)%

%01

(33)
k

=k, /(1 - u2)?
1 - K 1

3,
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Thus the exponential function regular and free of zeros in the
upper half plane for 0 < G5, < ky is

Y ~
exp{- 7% arc cos(&OI/kl)} (34a)
with its analytic continuation for &01 > El
Y Aoy * Y
exp{-j =& tn(-2—1)) (34b)
ky

so that in the limit &01 + © in the upper half plane, it
behaves as

fo33

. 01 -~ g

exp{-j - 2n(2 a01/k1)} (34c)
There now remains the factor Ié(yl)/(yl/Z)m = 1 Denote by
fl(a) its inverse

1 ~ -1
i o (vq/2)" (¥q/2)" (35
a) = - v
1 Im(Yl) Jm( 1/

recalling that y, = -j ¥, for -k_. /A . + M

P. <o < ko /@ - M.
In this form the decompoéition o} (o) is readi}y acco%plished
using the infinite product form of 3'(Y ). We shall again

omit the details of this well documegtea procedure with re-
ference to Noble, pages (N-128) and (N-129), and simply note
the results:

Q

~ m AT .
- 2(v4,/2) N & -o —— + 3 Y, (a)
Fra) = §§—1 "~ 5 L.s .2 1 (36a)
1 Y. I (¥.) s =14 _ +a
1 “m'Y1 1, s
where
2 Z —Zy
" _ kI - iz (L - M) - kg My
1, s (1 - M%)

1

_ /R - ug o (3 - M) + kg My

Z
1, s (1 - Ml)

&

N being the highest number for which &1 g are real, and

b
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a ©
Yi)y=-—-2m-c+my 7 ATy
s =1 um, s
‘ 1
e a ® a
- 1 y I . ] arc sin 01 p
- - 2 ~ 2
s =1 "m, s S 1 (01’ s + a01)
; 2 = 1,2 _ 2
with 01’ S um, S k1
and C = Euler constant = 0.5772

One can write down a similar expression for fi(a) or simply
note that

() = %I(a) () (36b)

The function Yq(a) can be put into a form more convenient for
computation by expanding the arc sin into a series and using
the Digamma function, ¢(Z). Thus, I'(Z) here being the Gamma
function,

V(Z) = T'(2)/T(2)

T o1 1
and ) S~ sFz -0t v+ 2)
s =1
find
a
__ %1 m, 1 :
Yi(a) = - —= [1+ y(N + 3 +3) + 2n 2n/k ]
_Jor oy 1 _ u
U = m_3 g: z
s=1s+N+g5-3 Vo] o4yt
0 w 2r + 1
+ [ A s2r Yooy o 1 ) } (37)
r =1 2r + 1 01 Ls : 1 /o2 ¥ 52 h g
1, s + N 01
r r
with A2r + 1= [ = (2s - 1)1/[2 r!(2r + 1)]

S

The choice of the particular form of the grouping now becomes
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Since in the 1imit o » « in the upper half plane, for

example, the factor regular and free of zeros in the upper
half tends to (Noble page (N-128)).

. e 11y
fy(a) = m - 1
(v4/2)
a a
expl-{x(a) - T%% n( ~01)
ky
a o o
01 01 .m 3,1 01 ., m 1
TG A - O (GE g -t PnlgE gt
a o
01 Z i
- = (_— )}]
JT g =1 um, s

Hence together with the remainder of the kernel, the trailing
edge condition is satisfied by picking x(o) to be

%01

~

x(a) = >

I1.2.e

J o
2L 1 - ¢+ (&
Ky
1 L
(% - )] (38)
1 S um, S

Decomposition of f4(a)

This now leaves just one factor to be decomposed f%(a) =

(Yz/Z)m/(Yl/Z)m which was introducted in conjunction wi

earlier factors.

fé(a)

and note that —— = m(—=

t,(a)

h the

v
_ 2.m
f4(a) = (77)
1
2 _ 11,
Yo Y1

+ .
Hence obtain the factor f4(a) closing the contour in the upper

half plane
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) ~ g ~ >~ ~ m
Yel\s | k, + k, - a =
fZ(a) - §g 2| 2" %2 . 51" fo1fp (39)
1] | ¥2 = %2 ki * %5y

. - +
with f4(a) = f4(a)/f4(a).
This completes the discussion of the Wiener-Hopf decom-

position of L*(a) into two factors L¥(o) and L*(a). These
now allow us to readily deduce quantities of physical interest.

I1.3 The Radiation Pattern and Conversion Coefficients

I1.3.a Asymptotic Solution to the Radiation Pattern

The simplest procedure by which to deduce the radiation
pattern is to asymptotically evaluate the integral pressure
expression in the limit (r? + xz)% + o, The expression for
the acoustic pressure field in region I1 obtains from (13) and
(18)

Pp = J Py W I () (1 + @ M2/k2)
2 2 " ] 2m py w(a + K IL¥(a) L*¥(-K )

X

n

Km(Y2 r)
Yo Km(YZ)

~JOX da (402)

It is convenient now to use the spherical coordinate frame
(R, @D , ¥) centered at the duct termination, then with
reference to Figure 6

X

R cos()
r =R sir1()

Thus in the 1limit R - « (or more precisely R sin + ©) one
can use the asymptotic expression for Km(yz R sin )

—Yz R sin()

Km(yz R sin@) ~ /TT/2Y2 R sin(H) e

There obtains the far field pressure approximation

P, 373 Y1/2 R sin (@) x

2m p .
1 o + Ky OL¥(a)LX(-K K} (v,)¥,

-0

J ey T Iy ) (1+ o My/k,)
(
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e~J B h(a) do (40b)

where h(a) is the free field propagation factor
h(oc). = q cos@— J Yg sin@. (40c)
The inversion of (40) can now be carried out by the method of

stationary phase [15]. The point of stationary phase cor-
responds to the root of the equation

h'(a) = 0
straightforward algebra yields the requisite root'ao
k
= 2 - cos{@D
% @ omg M : (4D

/1 - Mé sin” (H)
There obtains then the solution to the radiation field
-J R h(ao)
Pa NJm(“mn)Dhn( () ) = R (422)

Dmn( @) being the directivity factor defined by
. -1 =-3/2 .
b - J pe(1 + ag My/k,)(ay + K )70 v, o—dT/4 (42b)
mn , % . .
2 py LX(-K ) |hg (ay)|® L¥(ag)K (v,) /sin@®

and where after some algebra

L - M2 sin? 3/2
h! (0.) = - ( 2 ?lngb) (43)
0 ‘0 k, sin [63))

The -m/4 factor arising in the directivity factor from the
negative sign on hg (uo)

-J kz sinQD
Yo = -
N = M sin? @

The kernel functions Li(a) and L*(o) being

and

(44)

- \ 2 1 ~ i - ;
(1 + a Ml/kl) k2 + uoz kl 0.01 m/2

(1 + o My/k,) [ » -

L¥(a) =




r‘?‘ Y Sad ~
O Y gla ) Y
01 2 02 1 . ~
* i & _ ___Ya —
T+(0L) exp<\2 5 5 + — arc cos(oc01/k1)
, _Jm
+ 3 Yy(0) -4 (452)
k o, kK, + o /2
L* (o) ~2 %02 %1 01 o
ky + 8y kg - 8
AF
1 NoY, st
1 AT
T Yy Yo m(vl)H( ) (Y5) s =1 Gy g~ O
. %1 Yo  8(d55) vy -
T*(a) exp - 5 T 5 + — + - (m - arc cos(a01/k1))
_ s _Jm
jYi(e) - & (45b)

Y, (o 1) and g(d,,) are defined by equations (37), (27) to
% Then supggsing for example Ry, Rg are roots in the
upper half o plane

o - R1 o - R2
Em's" and T_’r_(d) = V@B/)\ &—'_——

T*(a) = V/SB/A =
4

I1.3.b Evaluation of the Conversion Coefficients

The conversion coefficients are deduced from the inversion

T+ M /KT (o DLFTN(-K ) T (vq T)

Py 7 3 J 1+ a M_/K + K_)L* T e
m ( a My/ky) (o mn PECe) vy TGyvy)

-jax

do. (46)

with the closure contour in the upper half plane. There are
no branch points, only the simple zeros of y; I’ (vl) neno*o
these zeros, obtained by solving the equation Y1 =

s to obtain for the pressure field within the duct 1n ?ﬁe
limit x » -

) Jm(umn I‘) eJ Kmn X

py = J _(u —_——
1 mmn Jm(umn)
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N i Jm(ums r) e—j Kms x | (47)
s ns Jm(”ms) J

it~ 8
[=e]

where Rﬂs is the m h mo e conversion coefficient of the nth

radial mode into the s

2 *_1 _ *_1 _ 2 2 =1
BN - (1 + Kms Ml/kl) Lr Kmn)L+ (Kms)(1 m /umsz (482)
ns (1 + KmS Mz/kz) (Kms + Kmn)(kl M1 - Kms(l - Ml))
7 .2 Y 14
and K = kg My * 7Ry - g (1 - M) (48b)
ms (1 - M%)

1

Kng being the sth reflected mode propagation constant, with
the plus sign on the radical being picked for the upper half
plane.

I1.4 Influence of a Doubly Infinite Centerbody

Suppose now that the duct inner wall is a doubly infinite
cylinder radius o, then adopt for Py and P, the representations

py = j Py w J A () (1 + a My/ky) X
Ia(rqy K (vy 0) = K (vy r)I (v, o)

-jox
Ylllé(Yl)K$(Y1 o) - K&(Yl)li(Yl )]

da (49)

oo

Py = J Py w J B+(“)

-0

(1 + a My/k,)K (Y, T)
Yo K1(7,)

-jox
e

do (50)

Before proceeding further, let us introduce some short-
hand notation to simplify otherwise bulky expressions involving
cross-products of Bessel functions which we shall repeatedly
encounter in the annular duct calculations. Specifically, we
standardize on the notation of equations (9.1.32) of reference
[14]. However, since several of the symbols have been used
previously in a different context, we shall use asterisks to
indicate the difference. In addition, to avoid ambiguity we
will always specifically indicate the arguments involved.

Hence note the following definitions:

qp(a, b) = J ()Y (b) - J (b)Y (a) (51a)
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rx(a, b) = J ()Y (b) - J (b)Y'(a) (51b)

s¥(a, b) = J ()Y (b) - J (b)Y (a) (51c)

Using the above shorthand notation, the incident wave can be
expressed as
J K9 x
- mn

p. . =q* T, U  0o)e

inc m' mn mn (52)

Then repeating the earlier steps, the Wiener-Hopf kernel L(a)
may be rewritten in the form

g

' 2
Po Y1 K (Y521 (Y4) (1 + a M,/k,)

L) = I 85 ¥, K (70T (7,) (1 + o W /K )
) 0y )

" Kr(vg o) I (vy) oy Y1 Kp(vpI Cvy)

L K (vy) I (vqy 0) P1 Yo K (¥5)I (¥q)

TR vy ) I (vq)

(1 + a Mz/kz)2
(T + a M /K7~ 1 (53)

The first square bracketed tefm is precisely the kernel L(a)
decomposed for the cylindrical duct to which reference may be
made. There remains the last factor which we designate as
W(a) for convenience. Again adopt the Koiter approximation
Wx(a) '

(54)

where by matching the function in the limits o > 0 and o » «
and the first derivative as o » 0 we obtain

SB _ pim W(a) = 1
A o > o
and § = W(0)
(55)
5/% = (=) - W(0)

w'(0)
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=

(0
W(w

N

§/8 = §/%

N

Now repeating the earlier calculations for the radiation
field and conversion coefficients obtain the result, in the
far field for Py (ao being defined by (41))

-JRh(oy) ,
o’ @ & (56
mn R 2)

~ ag*(1 U
p2 qm(umn’ umn

with the directivity factor Dgn«H»

. o -1 -3/2 -jn/4

ag
D @ = (56b)
mn 2 g ' 5 ' :
1 L*(-K )b (ag)|® L¥(ag)K! (v,)V/sin @
where “mn now are the zeros of
- _ _
W, sh(o, M, 0) =0 (56¢)

u = 0m## 0 are trivial and are not included in the set
o?’a&missible eigenvalues.

To determine the pressure field within the duct, invert
(49) with a contour closed in the upper half o plane. Again
there are no branch points and the inversion is carried out by
summing the residues at the zeros of Y1 [In(y1)Kp(o vq1) - s
Kﬁ(Yl)Ié(o Y1)]. Denote the values of a at these points by K
Then using t%e cross-product notation of [14], as defined aboveé,
the pressure field within the duct is given, away from the exit
plane of the duct, by

s®

- . 0]

.=
N =5 Ay Ty Wy O) eJ Ko X
1 m'"mn’ "mn q*(m o o)

m' mn’ "mn

(o)
g) -j K X
e ms (57)

e -
E m qm(“ms T ums

R
1 ns q;(ﬂms, Mos o)

. .. m .
where the conversion coefficients RnS are now defined as

o x=1¢_r0 x—-1,x0 — m2/52 Y-t
g _ (1 + Kms Ml/kl) L*x="( Kmn)L+ (Kms)(l m /Ums) s
ns G o o o 2
(1 + Km Mz/kz) (Kms + Kmn)(kl Ml - Kms(1 B Ml))

S

1

— =7 . - (58)
(umS - m“/c°) rr (s Ppg ©)
TPy @, 6, o)
ms m''ms’ "ms
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II.5 The Inlet Problem

Strictly speaking, the plug flow jet approximation is
totally incorrect in the inlet mode. However allowing the
license, one can treat such a formulation as a crude first
approximation, especially in view of the intractability of
the problem with a sink flow. For the inlet mode, the flow
duct is considered to be located at r = 1 and x > 0. Again,
both M1 and M2 are taken to be positive.

The inlet problem now is very similar to the exhaust
problem in that the governing equation and boundary conditions
are quite similar to those already considered. Hence only an
outline of the solution is given below. Recalling that

_13p _ ;3 942
p or [Bt + Mc Bx] n (59)
Let . -
A ()I'(y, r)e 9% da
_ - m-'1l
n I (v;) (60)
e m''1
o Ml -jax
® A_(a)(1 + ) e I (v, r)da
2 - 1 . (61)
Py = pq W ;
1 1 Yy ICvyq)

(It is readily verified that (60) and (61) satisfy (59).)

—3 b 3 '
exp(-j K¥ xu_  J (u 1) (62)

ns; =
inc M, Kx*
p wz 1 + _]'__I.Ilr_l 2
1 k1

where
Z _ — Z Z +
G T S A T T (63)
mn (1 - Mi)
and
= - 3 %k
Pine exp(-J K* x)J (u o T) (64)
In region II:
T B (a)K' (v, r)e 9% da
-]’]2 = J - mK'% ) (65)
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© B_(a)|1 + Y2 O -jox K (Y. r)do
, l_ K, J e m' Y2
Py = Py W (66)
2 2 R Y2 K (vy)
As before (62) indicates that n; = 0 for r = 1 for all x.

Hence by (65), (60), the W1ener—ﬁopf technique and Liouville's
theorem:

A_(a) = B_(a) (67)

Application of the pressure boundary condition for x < O
yields:

a M 2 a Ml 2
02(1 + —Eg-) K (Yz) (1 + kl ) Im(Yl)
XEPY - XE2% A_(a)
Py Y2 m' Y2 Yl m' Y1
3 I pn)
Y 2r(a - K* )0y oz = Hy(o). (68)

Again if we let
o M 2

pp(1 + 22) K (¥,)
L(a) = 2

Py Yo Km(Yz)

ﬁMl 2
1+ 5 I (v
- 1 69)
Yy IpCyq) (

and if L(a) can be factored as L (o) L (a), then the solution
of (68) is that

A (o) = -J Jm(umn) _ (70)
Py w? 2m(a - K;n)L+(K$n)L_(a)

(70) completes the formal solution to the inlet problem.

Note from (69) and (19) that
o M2
ko

Since (1 + a M /kz) is clearly a plus function we have
immediately that

L(a)/(1 + ) = L{a) (71)
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L (o) = L_(a)
and (72)
L,(a) = (1 + a M,/k,)L, ()

Equation (71) shows that any formula or method to_factorize
L(a) will immediately yield the factorization of L(a).

We wish to note that for the inlet problem if there is a
uniform flow over the entire plane the application of the
boundary condition that Ap(x) = 0 for x < 0, r = 1 (where Ap
denotes the jump in acoustic pressure across the phantom duct
extension described by r = 1 and x < 0) automatically ensures
that A¢ is also zero across such a surface. This is seen by
noting that if we write

Ap(x) = J P(oc)e_'jOLX do

then p = 0 for x < O implies that P(a) = P, (a), i.e. that
P(o) is analytic in an upper half plane. But the relation
between ¢(a), the Fourier transform of A¢(x), and P,(a) is
(for the case of uniform flow)

-3 P ()

0 wll + EEM]

d(a) =

Since the denominator in the expression for ¢(oa) has only a
lower half plane zero (at a = - k/M), it is clear that ¢(a) is
also analytic in an upper half plane (i.e. ®(a) = d,(a)).

This means that A¢ will be zero for x < 0 and r = 1. We have
verified that our solutions to the inlet and exhaust problems
are compatible with other solutions for the case of uniform
flow.

III. DISCUSSION OF SAMPLE CALCULATIONS

At the outset, let us clearly designate the convention
we will be using in labeling the various modes. We shall
always designate the lowest zero of a given lobe order m as 1,
i.e. n = 1 will be the lowest propagated mode of lobe number
m. Then, a label such as, the (m, n) mode will mean an m
lobed spinning wave and the nth radial order. (0, n) waves
will be the symmetric waves, and the plane wave will be (0, 1).
When we designate the phase of the reflected wave 6ms, this
will be taken to mean the sth reflected radial mode of an
(m, n) incident wave.

In the development of the theoretical model, a number of
approximations were made, some physical and some mathematical.
Each of these will clearly have their impact. Consider first
the physical approximations: The most crucial physical
approximation is the exclusion of any physical inhomogeneities
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such as turbulence and neglect of jet spread and mixing. While
this rendered the mathematics tractable, the use of the uniform
plug flow model entailed the use of the particle displacement
match boundary condition. Similarly, the thickness of the
exhaust duct and the termination of the annular centerbody

were excluded. The primary effect of these approximations is
to render the phase calculations inaccurate, since the phase

is particularly sensitive to such termination effects. The
least effect of such approximations is on the amplitude of the
radiation pattern. Thus it would appear that in phase synthesis
of a radiation pattern composed of a set of flow duct modes is
practically difficult if not rendered meaningless. On the
other hand the restrictive effects of the mathematical approxi-
mations introduced by the Carrier-Kojter procedure are probably
much less (except near the axis as + 0 for the radiation
pattern, as discussed below) provided one carefully observes
the rules devised by Koiter [9] and Carrier [10]. Indeed in
our calculations this approximation is restricted only to the
equivalent of the Wronskian normalized by the uniform flow
Wronskian, so that for uniform flow and no flow, our theory is
exact. In what follows, we shall try to illustrate these
points by concrete comparisons, especially those involving
experimental measurements.

There are several interesting features displayed by the
solutions such as equations (42a, b). The most obvious is the
convective amplification due to the main jet, (1 + a M1/k1)2,
and the weakening of that factor by the external flow,

(1 + « M2/k2)2. The second feature relates to the zone of
relative silence defined by

~ : N
cy (1 - Mé)
vl - M2 [Mz + c—l' ——-——(1 T Ml)]
@ < @, - oo >
—_— S -
Jl MZ [M 02 (1 - M2)]2
- 4+ £ __ 4
L 2 cy (14 M1) J
for M, = 0 (@) _ = cos™!{ °2/%
or (o] o = s COS l—rMI

within the zone of relative silence the signal suffers attenua-
tion due to the exponential factor _exp{y,/m arc cos(dgy/kq)},
which results in a cusp at = g for the plane wave and
nodes for the higher modes. The cusp has been previously
observed by Gottlieb [16].

In the case of yniform flow (My = Mp), the 1limit of the
solution for p, as + 0 is the same as the sclution obtained
for py (taking the case of the exhaust flow for concreteness)
with the closure contour in the lower half o plane. Such is
not the case for My # My in the present solution. Indeed, the
pressure distribution within the jet, as represented by, for
example, (46) displays a zero pressure on the axis which_ is
not reproduced from the far field radiation pattern as ?:) >
0. This appears to be the consequence of the Carrier-Koiter
approximation.
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Consider now the solutions for the symmetric modes, (O,
n). For the case of no flow and plane wave incident, our solu-
tion is exact as is illustrated by Figures 7, 8, 9. These re-
sults may be compared with the results of Levine and Schwinger
[2] among others.

More useful comparisons, however, are offered by the
experimental data of Plumblee et al. [6] and Mechel et al.
[7]. Figures 10, 11 compare the flow and no flow data and
includes the calculated effect of inclusion or exclusion of a
hub. Plumblee's data correspond to a monochromatic exhaust
mode and a hub which is terminated in the duct exhaust plane,
so that the calculated situation does not correspond exactly.
The measurements have been made with great care. Not sur-
prisingly, the no flow results show a reasonable agreement,
however the cusped lobe of the calculation with flow is
smoothed into an outward leaning cleaner lobe. Such a
smoothing of the radiation pattern is to be expected in view
of the scattering the radiated sound pattern by the intense
turbulence of the spreading exhaust jet. This process is
well illustrated by the calculations of Mani [17], thus note
in particular Figures 5, 6, 7 of that reference. Nevertheless,
the influence of the exhaust jet refraction is well brought
out by both the data and calculations. Indeed accounting for
the diffusive smoothing of the pattern, the peak direction
does seem to be approximated. On the other hand, the
influence of the hub is seen to be negligible.

Plumblee et al. {[6] have also presented some measured
radiation impedances. A sample comparison of these cases
calculated on the basis of our theory are presented in Table
I. The agreement, even in the case of no flow is somewhat
less than satisfactory. This well illustrates the influence
of the truncated hub in altering phase relations. Calculations
without the hub included show no better agreement. What
limited agreement there was with no flow, breaks down in the
presence of flow. Thus the physical flow model appears to
greatly exaggerate the acoustic mismatch between the duct and
the surrounding, and the error, as will be seen presently,
does not wholly originate of the Koiter approximation.

Before considering the data of Mechel et al. [7], recall
that the use of the uniform plug flow model resulted in the
use of the Miles [12] - Ribner [13] particle displacement
match boundary condition. In essence, this boundary condition
results from the assumption of a clearly defined flow inter-
facial streamline with the acoustic motion being transmitted
from one region into anotlher by the transverse perturbation
of that clearly defined interfacial streamline. However, in
the case of the ill-defined, highly turbulent flow of the jet
boundary, the mean velocity changes "almost' smoothly across
the interfacial region. In this case, noting the calculations
of Mani [17], there appears to be little reason to presume the
picture based on the Miles-Ribner argument. Interest in this
question was recently revived by Ingard and Singhal [18] who
presented intriguing experimental evidence on the coupling of
a sound source with a turbulent flow duct. Their evidence,
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moreover seemed to favor the discarded notion of continuity
of particle velocity rather than the displacement.

It was hoped for that the present calculations be useful
in this regard concerning the exhaust jet. The thought was
that the duct reflection amplitude is a function of the boundary
condition used. Then a comparison of the low frequency pre-
diction using the two boundary conditions when compared with
low frequency flow duct experiments of a similar nature might
sort out this thorny question. Indeed the data of Mechel et
al. [7] offer this opportunity, and it was a simple matter to
modify our theory to include a particle velocity match at the
jet interface.

Such a test, as discussed above, is offered in Figure 12.
Both the boundary conditions show a similar trend and predict
reflection coefficients higher than the uniform flow case.
Neither calculations reproduce the peak in measured reflection
coefficients, but both do reproduce the reflection coefficients
to within an acceptable error. However the marginal variation
in the calculation does not allow a critical judgment of the
boundary condition. As a closing remark for this aspect of
the discussion, it should be noted that the no flow results of
Mechel et al. did reproduce the calculated results to a high
degree of accuracy.

Finally, before proceeding to the discussion of asymmetric
modes, the influence of the Mach number and flow mismatch are
illustrated in Figure 13.

Consider now the asymmetric modes. 1In light of the above
discussion, we shall concentrate on results for the radiation
patterns. In Figure 14, a comparison between our theory and
the experimental results of the phased array model of Plumblee
et al. [6] is offered. A disconcerting feature of these data
is the non-zero radiation amplitude on the axis even without
flow. This suggests spurious effects not accounted for in the
physical model on which the experiments are based. Similarly,
the theoretically predicted lobe in the shadow zone of the jet
cannot be picked up over the flow noise of the acoustic pickup.

A somewhat better agreement is apparent for the calculated
(4, 1) mode in Figure 15. Plumblee's data have not been
plotted on this figure and reference must be made to Figure 20
of that paper. However the refractive shifting of the pattern
and the narrowing of the dominant lobe are both reproduced.
Figure 15 also presents the effect of a weak external flow
which may be interpreted also as a flight effect. The ultimate
situation of the flight speed matching the jet speed being the
uniform flow case. The effect of the weak external flow is to
shift the pattern towards the axis and reduce the shadow zone
lobe.

More dramatic example of the jet Mach number effect is
shown in Figure 16. One sees here the conflict between the
axial convection at high Mach numbers, beaming or trapping
the dominant component of the radiation in the shadow zone and
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the sharp refraction towards the sideline. The flow enhanced
frequency k4 also increases the number of nodes. Compare this
figure with the plane wave calculation in Figure 2 of Mani [5].

The physical model we have chosen is expected to better
represent the exhaust conditions. However, the effect of flow
inhomogeneities has been to weaken the correspondence. On the
other hand in the inlet mode, the smoother sink flow is not
represented by our model. Yet paradoxically, note the com-
parison of our calculations with the Crigler and Copeland [8]
data. It would appear that the 53 - 62 rotor/IGV interaction
has resulted in a dominant (9, 2) mode. Compare too the
phased array data of Pasko [19] with our calculations in
Figure 18. 1In both the cases, we used a small external flow
to weaken the degree of the flow mismatch.

In the turbine exhaust noise problem, the dominant flow
mismatch is the temperature. From simple kinematic con-
siderations, it is possible to illustrate the influence of the
hot jet is to sharply beam the sound into the sideline. Thus
Candel [20] has shown that a plane wave incident on a flow/
temperature interface at an angle 06, is sharply refracted to

an angle 62 1
6
cos 8, = 502/;1)222 el
B | 1

with Mg = 0. Hence consider the radiation patterns of Figures
19, 20. Figure 20 is somewhat more meaningful since it cor-
responds to a physical case of fixed axial velocity and fre-
quency of the upstream sound source.

IV. CONCLUSIONS

In this study we have offered a method of calculation
for spinning acoustic duct wave guide mode radiating through
a flow mismatch. The convected wave equation was solved in
part exactly, partly accounting for the asymmetry introduced
by the flow mismatch into the mathematics by the Carrier-Koiter
procedure. An attempt was made to compare the predictions of
the current theory with realistic experimental models. It is
concluded that the value of the calculations is primarily in
explaining qualitative features of spinning mode radiation
patterns. Real flow features not accounted for especially
preclude the reproduction of phase information. Paradoxically
there appecars to be a better gqualitative agreement for the
inlet mode for which the physical model is not really meant
than the exhaust mode which we tried to approximate. This
appears to be the result of relatively cleaner inflow condi-
tions. An attempt was also made to test the issue of the flow-
acoustic boundary condition, but the result was not decisive.
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Figure 1 Schematic of the model problem.
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Figure 3 Path of integration.
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Figure 6 The radiation field.
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Figure 11 Comparison of a hubless plane wave radiation pattern
with data of Plumblee [6].
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Figure 13 Calculated effect of Mach number on the plane wave reflection.
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Figure 15 Illustration of the influence of flow mismatch and flight effect.
Compare with data of Plumblee [6] for the (4, 1)
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Figure 17 Trial calculations for an inlet mode and comparison with Crigler
and Copeland [8] fan data for 53 bladed fan and 62 bladed IGV (9 lobe

spinning mode).
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Figure 18 Annular inlet directivity patterns, comparison of theory
with phase speaker array data of Pasko [19].
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Figure 19 Effect of hot exhaust jet with fixed Mach number and reduced
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Figure 20 Effect of hot exhaust jet with fixed physical exhaust jet speed
and sound frequency.
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